
iCC 2003 CAN in Automation

1

MilCAN and Ethernet

Periklis Charchalakis, George Valsamakis, Bob Connor, Elias Stipidis

This paper aims to give a general description of a Bridge designed to transparently
interconnect a cloud of MilCAN [1] segments using a high-speed backbone such as
Ethernet. MilCAN is a protocol developed under the auspices of the International High
Speed Data Bus User’s group in order to cover the requirements for military Vetronics
systems, providing deterministic and redundant communication between MilCAN
nodes. With the constant increase of embedded devices within a vehicle the need for
interconnection clashes with the speed limits of available backbone protocols. The
VSI-Bridge is a software-based Bridge with routing capabilities (BRouter) developed to
connect a MilCAN segment to high-speed complex protocols used as backbones. The
target was to offload non-critical traffic from the embedded network to the backbone,
thus reducing the load.

Introduction
Military Vetronics systems are
predominantly distributed real-time
systems where the communication
network has to provide a reliable and
deterministic transport mechanism. The
whole system has to be deterministic,
redundancy capable, and with error
detection and isolation.

The MilCAN protocol, developed within
QinetiQ (formerly DERA), provides a
suitable solution for Vetronic systems.
Using the CANbus network, MilCAN adds
a thin Quality of Service layer below the
application. By implementing message
priorities, message ‘time to live’ and time
synchronization between the nodes, the
traffic on the CAN bus is controllable and
the network deterministic, without the need
for a traffic management scheme within
the application.

As MilCAN is based on CANbus it is
limited by its theoretical maximum 1Mbit
bandwidth. When multiple segments need
to be interconnected with a backbone this
becomes a problem, as the determinism of
the network will be affected by the high
traffic. The use of MilCAN-to-MilCAN
bridges that filter unwanted traffic could
provide a solution, but again the backbone
bandwidth usage will have to be kept well
below the 1Mbit limit, thereby limiting the
number of connected segments
(depending on the application). This would
also make it difficult to monitor the ability

of real-time traffic of a segment the
backbone.

Using a high-speed network as a
backbone would solve the bandwidth
limitation and allow future addition of more
segments, without the need to reconfigure
the current network. Using Ethernet for
backbone provides a viable solution where
the high bandwidth (up to 10Gbps) can
support a very high number of MilCAN
segments, and also compensate in some
degree to the lack of determinism.

The VSI Bridge, developed in collaboration
between the Vehicle Systems Integration
(VSI) group at QinetiQ and the
Communication Research Group (CRG) of
Sussex University, is a Proof of Concept
implementation of using Ethernet for
transparently bridging multiple MilCAN
segments. It was designed to maintain the
priority scheme of MilCAN both internally
(Bridge components) and externally
(network interfaces). It also implements a
Standard Interface Layer, where one or
more CAN, Ethernet, or any other network,
could be added at any time and
interoperate transparently with each other.
In addition, routing capabilities and a
remote configuration utility provide easy
network management and monitoring to
the user.

CAN in Automation Session

2

MilCAN Protocol
The MilCAN operation is based on bus
scheduling and the segmentation of the
CAN Message Identifier to provide 8
priorities, as shown in table 1. Lowest
priority-number messages are transmitted
first.

Priority

0 (SYNC)
1 (HRT)
2 (HRT)
3 (HRT)
4 (SRT)
5 (SRT)
6 (SRT)
7 (NRT)

Expiry Time

-

2ms
16ms
128ms
16ms
128ms
2048ms

�

Table 1: MilCAN priorities

SYNC and HRT have guaranteed
latencies, while HRT and SRT have
guaranteed and probable latencies
respectively up to their individual Expiry
Times. NRT messages are the lowest
priority messages and never expire. The
Expiry Times are adjustable according to
the application [2].

MilCAN Scheduling
The scheduling is controlled using Time
Division Multiple Access (TDMA) with a
2ms slot. A Master Node is used to keep
the segment synchronized by sending a
specific SYNC message every 2ms to
signal the beginning of the new Sync-Slot.

At every Sync-Slot a MilCAN node is
allowed to send one or more messages
with SYNC/HRT priorities, while SRT
messages are allowed to take over empty
HRT slots and idle bus time. Due to the
CANbus prioritized Media Access Control

(MAC) protocol, messages transmitted
from all the segment nodes are arbitrated
and delivered highest priority first.
Undelivered HRT/SRT messages are
scheduled to be expired and dropped, if
their delay (within any software queues or
due to high bus traffic) gets higher than
their maximum lifetime. NRT messages
never expire (they are transmitted on bus-
idle times).

Using this scheme, MilCAN can control at
Network layer the message flow. Running
independently from the user’s application it
reduces development time, as the
developer does not have to implement any
monitoring to protect the network from
excessive traffic.

Sync Master
In a MilCAN segment a node operates as
a Master node that notifies the rest of the
nodes when a transmit slot has changed,
by sending the Sync frame every 2ms.
Every node has the ability to become a
Sync Master of its segment. As every
node has a specific address (within a 255
range address space), the one with the
lowest address becomes the dominant
Sync Master. The other nodes passively
monitor the Sync frames and in case the
current Master fails they arbitrate so that
the next lowest address node becomes
the new Sync Master.

Figure 1 : MilCAN Message Identifier format

iCC 2003 CAN in Automation

3

VSI Bridge
The VSI Bridge was developed as an
initial test-bed for evaluating various
networks as high-speed backbone for
MilCAN segments. The target was to
provide a Standard Network Interface
layer where different networks would plug-
in and route encapsulated MilCAN frames,
while maintaining the MilCAN priorities
both within the system and over the
network. Routing, filtering and monitoring
functionality was added, making the
system a Bridge/Router (BRouter). The
overall design of the system is shown in
figure 2.

The software was developed using
wrapper libraries to be able to run on
various Operating Systems (Linux,
Microsoft Windows, Sun Solaris, etc),
including embedded systems. In the
current implementation the Bridges run on
Linux workstations and embedded network
processor.

Bridge Structure
The internal architecture of the Bridge is
divided in four main parts, the NAT that
does the filtering and routing, the Network
Interfaces layer where all the network
components are plugged in, the NCC that
handles various internal functions and
monitoring, and the Global Pool which is
used to store and manipulate MilCAN
frames.

MilCAN frames enter the Bridge from the
Network interfaces and then are forwarded
to the NAT where, depending on the
configured rules, they are dropped or
routed to the destination interface. There
is also the ability to modify the CAN frame
identifier and mirror it to multiple
destination interfaces

The communication between these
components is done by a prioritized
message-passing interface. Tokens
implement the same 8 level priority
scheme as MilCAN, reducing latencies on
high priority frames.

 NAT
dB

reference

NCC Global Pool

Network Interfaces/ Registrar

Application
CAN Interface

Ethernet
(EtherNET/IP)

Interface

�� Network Address Translation

Function - (Process and
manipulate messages)

� Network Control Center
�� Global Pool

Function - (Internal Bridge
component monitoring and
control)

� Network Interfaces/Registrar
Function - (Standard Vetronic
Interface)

� Network Interfaces
Function - (Standard discrete
sub-interfaces for applications
and network protocols)

Figure 2 : Bridge component structure

CAN in Automation Session

4

As the Bridge is meant to run on an
embedded system where the available
resources are limited, emphasis was given
on the efficient usage of the CPU cache
and memory. Embedded processors have
low speed memory busses and small CPU
cache, compared to workstation PCs. To
maximize the effective processing
throughput of the CPU, memory transfers
have to be minimal. In the Bridge the use
of the message-passing interface
combined with the Global Pool component
reduce the memory footprint while keeping
the system modular.

A Graphical User Interface (GUI) is used
to configure the Bridge remotely. Running
the GUI on a PC (desktop/laptop) which is
attached to the backbone, one can
connect to the available Bridge(s) and
manipulate the rules stored in the internal
NAT databases. Additionally, statistical
information about the traffic load of each
interface can be obtained, and also real-
time monitoring of the traffic being routed
through the Bridge.

Bridge Interprocess Communication
The intercommunication within the Bridge
is handled by the Mailer, a custom
software component that uses shared
memory and a message/token based
communication. The internal queues use
the 8 level priority scheme of MilCAN
(SYNC, HRT1-3, SRT1-3, NRT).

Processed MilCAN frames and internal
Bridge commands are stored in the shared
memory and a token is created for each.
These tokens are then forwarded between
the main Bridge components for
processing, depending on their
functionality.

For a token to be transferred a “message”
is created which includes the priority of the
attached token. In this way critical
commands can have higher priority
(configuration, notifications, etc) than
others (monitoring, logging) and reduce
reaction latencies. In addition, messages
with CAN frames are tagged with their

MilCAN priority, to maintain the MilCAN
protocol requirements.

With this message-passing interface an
internal network is formed where
components can be added and
interoperate easily without the need for
modifications to the existing ones.
Theoretically, the Mailer could be
implemented in hardware allowing the
whole system to be spread into two or
more processors sharing the processing
load and thus lowering the system
latencies.

NAT
The Network Address Translation (NAT)
component handles the routing and
filtering of bridged MilCAN frames. An
internal database holds the routing rules
configured from the GUI. Incoming frames,
from the Interfaces, are checked with the
filtering rules that are stored in the internal
database. If a match is found the relative
command is executed. If no match is
found the frame is discarded.

The available commands are Route, Drop,
Mirror, and Modify. The Route and Drop
forward the frame to a specific interface or
discard it respectively. A Mirror command
creates multiple copies of the frame and
forwards it to more than one destination
interfaces. With the Modify command one
or more fields of the MilCAN frame
(priority, message id, source node id, CAN
frame flags) can be modified. The rules
are executed serially based on their index,
until a route or drop command is found.

Network Interfaces
One of the main aspects of the Bridge is
the ability to use different types of network
protocols transparently to the rest of the
system. As the main data unit is a MilCAN
frame, a standard interface (the Standard
Vetronics Interface) was devised to
accommodate all transfers.

The Network Interfaces component
consists of a layer that handles the
communication with the rest of the Bridge,
and the Interfaces that are independent

iCC 2003 CAN in Automation

5

units implementing the stack of their
specific network protocol. These units
handle the encapsulation of the Standard
Interface frames into their protocol, and
their transmission/reception. Incoming
frames once unpacked are forwarded to
the upper layer, which in turn forwards
them to the NAT. After passing through
the filter if they have a destination they are
sent back to the upper layer, which
forwards them to the relative interface.

The combination of the Standard Interface
along with the upper layer allows the
network interfaces to operate transparently
to the whole system, and also be dynamic
and hot pluggable. Any number of
interfaces, either of identical or other
protocols, can co-exist and interoperate as
long as they can encapsulate the Standard
Interface frames. In the current VSI Bridge
implementation the interfaces used were
CAN, standard TCP/IP over Ethernet, a
custom EtherNet/IP [3] implementation, a
command line user interface, and a
graphical user interface.

Standard Vetronic Interface
The standard interface structure is shown
in figure 3. It consists of 16 bytes that
include all the fields of a MilCAN frame. It
is used as a standard structure to
represent a MilCAN frame within the
Bridge. Additional information is also
encapsulated, used for the communication
with the embedded controllers that handle
the MilCAN protocol communications.

In the Bridge implementation the MilCAN
code should run independently of the
Bridge on a dedicated processor, in order
to fulfill the MilCAN timing requirements.
This would typically be implemented on a
microcontroller with limited processing
power. Hence the communication with the
Bridge has to be with the smallest
overheads possible. Instead of having to
implement a custom protocol to
encapsulate MilCAN frames along with the
commands exchanged with the Bridge, the
following additional information were
embedded within the standard interface:
Command/Data Frame: distinguishes if
the frame is a command (used to send
custom commands from/to the MilCAN
controller) or a MilCAN frame.
CAN Segment: shows from which CAN
port/segment the frame arrived or to which
it should be sent (for dual-CAN
controllers).

Using the Command/Data Frame field the
SVI frame can be converted from a
MilCAN frame to a custom structure
holding any application based commands,
providing flexibility and compatibility to
current and future implementations.

Priority Message ID Node Address Control Sync Slot Payload
1 byte 2 bytes 1 byte 1 byte 2 bytes 8 bytes

Command/Data Frame Can Segment Reserved Priority
1 bit 1 bit 3 bits 3 bits

Main Function Sub Function
1 byte 1 byte

MILCAN Extended RTR Reserved DLC
1 bit 1 bit 1 bit 2 bits 3 bits

Figure 3 : Standard Network Interface frame format

CAN in Automation Session

6

VSI Rig
The test bed VSI Rig configuration at
QinetiQ consists of three MilCAN
segments, as shown in figure 4. The
Multimedia Control segment, used for
audio/video nodes like camera units, the
Automotive segment with the engine
controller, transmission controller, and
driver controls, and the Utilities segment
hosting vehicle devices such as lights,
wipers etc and drivers instruments. Three
Bridges, three Ethernet switches with
100Mbit ports and Gigabit backbone, and
a CAN network, form an integrated system
network.

MilCAN Interface
For the MilCAN interface a 40MHz 16bit
dual CAN Infineon microcontroller with a
USB1.1 device controller was used. The
MilCAN code running within the node
redirected all MilCAN traffic from the
nodes to the Bridge through the USB, and
vice versa. Both CAN busses were used
and the communication was done using
Standard Vetronics Interface frames.

Ethernet Interface
Switched Ethernet network was used for
the high-speed backbone. The 100Mbit
Full Duplex speed, although non-
deterministic, provide a low-latency
transfer medium for the low traffic of one
or two 1Mbit MilCAN segments. Limited
only by the TCP/IP stack efficiency and

hardware/software checksumming, the
average packet latency is around 50ns.
Utilizing the Ethernet’s MTU of 1500 bytes
for block transfers the system processing
overheads are reduces even further. As an
example implementation, standard TCP/IP
sockets were used to transfer MilCAN
frames between the Bridges.

EtherNet/IP Interface
Additional to the standard TCP/IP
implementation, a custom implementation
of EtherNet/IP (Ethernet Networks /
Industrial Protocol) was used on top of
TCP/IP. This protocol defines specific
packet headers, ports, and functions such
as remote device enumeration, and time
triggered actions. The current VSI Bridge
EtherNet/IP interface includes only the
basic functionality.

GUI Interface
A Graphical User Interface was developed
to configure a Bridge locally or remotely.
The user can insert/remove/list the filtering
rules, view basic traffic statistics per
interface, and also monitor traffic. These
functions can be performed on a local
Bridge or on a remote one, using either
the Ethernet or the EtherNet/IP interfaces.

B

B

B

Utilities CAN Segment - Fuel+Light, Wipers+Light,
Drivers Instruments, Vehicle Lights etc

Automotive CAN Segment - Engine Control, Transmission
Control, Steering Actuator, Driver Controls, Auxiliary Control etc

Multimedia Control CAN Segment – Camera
Control, Pantilt conversion, Camera Unit etc

Battery model

Software Emulated Instruments1Mpbs CAN
backbone

SW

SW

SW 1Gpbs Ethernet
backbone

100Mpbs p-t-p
Ethernet Links

Remote access
monitoring and
configuration

application software

Figure 4 : QinetiQ MilCAN Test bed topology

iCC 2003 CAN in Automation

7

VSI Bridge performance
To evaluate the performance of the Bridge
basic scenarios were simulated on the
QinetiQ rig, using the Automotive and
Utilities segments. Two Bridges with
Ethernet and CAN interfaces acted as a
backbone.

The Bridges run on two laptops with
650Mhz PIII processors, and the MilCAN
interfaces on two C167CS 16bit 40Mhz
dual CAN controllers.

A simulated scenario was run with the
Bridges configured to route all the traffic
through the CAN backbone segment and
through the Ethernet network. The
observed traffic per priority was the
following (approximate values, also shown
in figure 5):

HRT 1: 800 frames/sec
HRT 2: 800 frames/sec
HRT 3: 8 frames/sec
SRT 1: 12 frames/sec
SRT 2: 41frames/sec

The observed latencies within one Bridge
are shown in figure 6. For HRT1 and
HRT2 the average latencies are
approximately 325ns and 375ns
respectively.

These are initial performance
measurements as the Bridge is currently
under development. The internal
components are being profiled to detect
bottlenecks and new database and queue

implementations are being evaluated to
decrease message latencies as much as
possible, as the system is targeted to run
on embedded processors with limited
processing power. In parallel the MilCAN
Interface Node code is being developed
along with the Bridge, to further optimize
the system and utilize features like
concurrent CAN/Ethernet traffic sharing,
with cut-through CAN bridging, and
dynamic filtering rules from node message
flooding.

Conclusion and Discussion
With the current advances in high speed
networking media protocols their use in
real-time embedded systems seems
feasible using stock hardware products
and focusing the development on the
overlying software protocols, instead of
designing custom networks to fulfill the
project requirements.

Ethernet, by breaking the speed barriers of
embedded networks by 1000 to 10000
times-fold, along with the wide range of
available hardware (switches, routers) and
transfer mediums (copper, fiber, wireless),
provide a promising choice as a backbone
for an embedded network. Many
automation micro-controllers ranging from
8bit to 32bit are being developed to
include an Ethernet physical layer along
with a basic TCP/IP stack. As Ethernet
with TCP/IP is used in almost every
computer network globally, most software
programmers are familiar in working with
it, thus providing a wider range of

Figure 6 : Message latencies per priority

Figure 5 : Bandwidth usage per priority

CAN in Automation Session

8

experienced developers in the IT market.
Also the presence of a Video capable
network within a military or commercial
vehicle allows the use of High Definition
cameras (military) or DVD streaming
(civilian vehicles).

The VSI Bridge proof of concept
implementation shows that it is possible to
use Ethernet to relieve an embedded
deterministic network running MilCAN by
offloading low and non-critical traffic, while
also providing a wide range of monitoring
and configuration features, that would
otherwise not be feasible.

Acknowledgements

The work presented in this paper was
funded by the UK MoD as part of the
Applied Research Programme and
undertaken by QinetiQ and the
Communications Research Group of
Sussex University.

References.

[1] MilCAN Specifications,
http://www.MilCAN.org/

[2] Steven T. Majoewsky, Colin Davies,
“MilCAN: Adapting COTS CANbus to
Military Vetronics”, 8th International CAN
Conference, 2002, USA.
[3] Open DeviceNet Vendor
Association,”EtherNet/IP”,
http://www.odva.org/

Periklis Charchalakis
University of Sussex
Falmer
Brighton
East Sussex
United Kingdom
BN1 9QT
Tel: +44 (0) 1273 678957
Fax: +44 (0) 1273 678399
P.Charchalakis@sussex.ac.uk
www.comms.engg.susx.ac.uk
George Valsamakis
University of Sussex
Falmer
Brighton
East Sussex
United Kingdom
BN1 9QT
Tel: +44 (0) 1273 678957
Fax: +44 (0) 1273 678399
G.Valsamakis@sussex.ac.uk
www.comms.engg.susx.ac.uk
Bob Connor
QinetiQ
Cody Technology Park
Ively Road
Farnborough
United Kingdom
GU14 0LX
Tel: +44 (0) 1252 397011
Fax: +44 (0) 1252 397011
Rmconnor@QinetiQ.com
www.QinetiQ.com
Dr Elias Stipidis
University of Sussex
Falmer
Brighton
East Sussex
United Kingdom
BN1 9QT
Tel: +44 (0) 1273 678957
Fax: +44 (0) 1273 678399
E.Stipidis@sussex.ac.uk
www.comms.engg.susx.ac.uk

http://www.milcan.org/
http://www.odva.org/
mailto:P.Charchalakis@sussex.ac.uk
http://www.comms.engg.susx.ac.uk/
mailto:G.Valsamakis@sussex.ac.uk
http://www.comms.engg.susx.ac.uk/
mailto:Rmconnor@QinetiQ.com
http://www.qinetiq.com/
mailto:E.Stipidis@sussex.ac.uk
http://www.comms.engg.susx.ac.uk/

